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It is usual to pass from the discrete to the continuous limit in constructing models for 
applications. Such models are often very complicated for direct examination, and numerical 
methods are often the only ones to use. A numerical algorithm involves passing from the ana- 
log representation to a discrete one. The resulting discrete model must be as close as pos- 
sible to the initial analog model. The flnite-dlfference method is one of the most widely used. 
The differential equations are replaced by a difference scheme, which may be constructed in 
various ways. This makes the importance of qualitative examination of such schemes clear. 

Differential approximation is widely used in examining difference schemes for hyperbolic 
equations [i], which enables one to construct new difference schemes with preset properties, 
while also enabling one to analyze existing or new difference schemes and to classify such 
schemes on the properties. 

It is shown here ~hat differential approximations can be used in asymptotic analysis of 
a difference scheme, and it is also shown ~hat invariant difference schemes are closer to the 
initial analog model than are schemes chat are not invarlant under analog transformations 
allowed by the initial differential equations. 

i. Asymptotic Expansion of the Solution to a Cauchy Difference Problem. Asymptotic 
analysis is one of the major methods of qualitatlve examination for difference schemes. 
Studies have been made [2-5] of the scope for examining asymptotic behavior in difference 
schemes by differential approximation. It has been shown [2] that the solutions to some 
schemes in generalized-function space converge to the corresponding differential approxima- 
tions for t § - and a given time step. A study has been made [3, 4] of the asymptotic be- 
havior of the solutions to a one-parameter family of difference schemes; the solution to the 
Cauchy problem for the differential approximation gives an asymptotic representation of the 
solution to the Cauchy difference scheme in a certain topological space (subject to fairly 
rigid constraints on the schemes and differential approximations). Following [5], it has 
also been shown that a similar assertion applies in the linear topological space of general- 
ized functions Z' without substantial restrictions on the difference schemes and differential 
approximations. 

I. For simplicity, we consider the case of one independent spatial variable, although 
all results apply in the multidimensional case. 

We recall certain definitions and symbols from the theory of generalized functions re- 
quired subsequently. 

Let S be the space of rapidly decreasing functions of real argument, while D(R) is the 
space of finite functions whose carrier is contained on the real axis R, while Z is the 
space of integer analytic functions of complex argument that satisfy the following condition: 
for any function ~ (z) ~ Z and for anyk (k >i O) there exist constants a and C k such that 

Jzh~@)] < C~ exp {alImzl}. 

Generalized-function spaces (spaces of linear continuous functionals) upon the spaces S, 
D(R), and Z are denoted, respectively, by S', D'(R), Z'. 

If f is the generalized function, then the value on a basic function is denoted as (f, 
+~ 

q); if f(x) is a su~unable function, then (/,~)= ] /(x)~(x)dx. 
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The following operators are defined on the above basic-function spaces: 

7 
t ~ (x) dx, DTncp (x) = ~ z  ~ , F -a [~1 (D = -N- e - ~  ~  

+ ~  

T~ (z) = + (z + u), (1. l) 

(~.  , }  (x) = ~ ~ (u} ~ ( ~ -  u} dy, ~ (~} = ~ (-- x), 
- - c o  

which may be de f ined  in  g e n e r a l i z e d - f u n c t i o n  spaces  in  such a way t h a t  the  cor respond ing  
o p e r a t o r s  ac t  as in  b a s i c - f u n c t i o n  apace when a g e n e r a l i z e d  f u n c t i o n  i s  a b a s i c  f u n c t i o n .  
We d e f i n e  the  o p e r a t o r s  of (1 .1)  below in  g e n e r a l i z e d - f u n c t i o n  apace (f and g denote  g e n e r a l -  
i zed  f u n c t i o n s ,  whi le  $ i s  a b a s i c  f u n c t i o n ) :  

(F[/], r  (1, F[r (F-CEil, r  (f, F-~[r 

~, r = q, $), (D m f, ~) = (--t)m(f, Ores), 

( r j ,  +) = (/, r_~+), ff,~)(z) = (I, r _ ~ ) ,  

if, g, ~) = (g, 7 * +) 

By ~y we denote a generalized function that acts in accordance with (6y, ~) = ~(y). 

2. Consider the difference scheme 

b a T ;n+a 
Ictl~qi IfJl~qo (1,2)  

in S' space. Here 0 qx, q: < ~,b a, b are certain real constants and h is a parameter. 
The schemes of (1.2) may be written as 

to l , ]n+X = WO . ]n (1.3) 

where 

wj----Ajg,= ~ b~8_~h, i = 0 , t .  
~/ Ictl ~ qj 

Everywhere in what follows, we assume that the following are obeyed: 

FItojl(z) =/= 0 Vz ~ R, i = 0,1. 

The E form of differential representation for the difference scheme of 
fies (1.4) is the equation 

d] (t) = ~ f - 1  [In F [tool -- In f [wall, f (t). 
dt T 

(1.4) 

(1.2) that saris- 

(1.5) 

We consider the Cauchy problem for (1.2) and (1.5) with the initial condition 

p = / (0 )  = ~. (1 .6)  

The following assertion has been proved [5]: 

THEOREM i. Let fo ~ S'; then the Cauchy problem of (1.2) and (1.6) and of (1.5) and (1.6) 
has a unique solution in space S'. Also: a) if f(t) is the solution to (1.5) and (1.6), then 
{fn}~_~ is the solution to (1.2) and (1.6), where fn = f(nx); b) if the solution to (1.2) and 
(l.6~-is {fn}n~=o, then there exists a one-parameter family of generalized functions f(t) that 
constitute a solution to the Cauchy problem of (1.5) and (1.6) and which is such that f(nT) = 
fn. 

It has also been shown [5] that the following applies in a certain generalized-function 
space dependent on the difference schemes of (1.2): 

F - a t l n F [ w j l ] , / =  ~ h k ( i D ) h ] ,  ] = O , l .  (1.7)  
k=O 

Equat ion (1.7)  a p p l i e s  in  gene ra l  in  a weaker topo logy  than t h a t  of  S ' .  In (1 .7)  the  ~ h  k -  
denote  c o e f f i c i e n t s  in  the  expansion of the  f u n c t i o n  in  F [wj ] (x )  as a Taylor  s e r i e s  near  x = 

0,  i . e . ,  In F [w~l (x) = E ~b~xL 
h=O 

582 



3. We show that the right side in (1.7) can be taken as an asymptotic expansion of the 
generalized function F-t[in F[wj]]*f for h § 0 in topological space S'. 

We recall that the formal series ~ a~h ~ is termed an asymptotic expansion of ~ (h) for 
h § 0 if for any integer N ~=0 

This is written as 

h ~  0 h=O 

q) (h) ~ ~ aah ~ (h-+ 0). 
h=O 

In the same way we write the asymptolc expansions of the generalized functions dependent on 
00 

the parameter: the series ~ [kh ~ is called an asymptotic expansion of the one-parameter 
k=O 

family of generalized functions f(h)(f(h) ~ S', fk ~ S'Vk) for h § 0 if for any basic func- 

tion Cp ~ S we have ([(h), cp)N ~ ha([~, ~) (h-+O). 
k==O 

I t  can be  shown t h a t  i f  ] ( h ) N  ~ lkh ~ (h-~O), t h a n  FIII N ~ ~ lh lh  k (h- .O)  ; m o r e o v e r ,  f o r  
k=O k:O 

any given x ~ R (here and subsequently the ,subscript J is omitted) we have 

1- F [wl (*) ,-' ~] ~*~h ~ (h ~ 0). 
k~O 

We show that for any basic function ~ ~ S the product 

~N (h) -- In F [wl (*) - -  Y~ ~l~*kg ~ ~ (~)/h ~ 

converges to zero for h § 0 in S, 

Since ~, n~x~h ~ converges to In F[w] (x) for ]xh] ~<,ro for some r~ > O, then 
k=O 

where Co(h) § 0 for h § O. Further, for x ~ R 

[ in F [wl (x) I <  c l  (i + I xh I )~1 

for certain constants Ct and M,, so [In F[wl(x)]~ C, lxh] M' f o r  Ixh] 1> t o ,  M2 > N, and t h e n  

l ~ I IC~ Ixh]~r~ 
In F iwl (z) - h=o ~ ~hx~h~ < [ChUl z I u, l *hl~ to. 

ThenV~ (x) ~ S 

N N s~u~P~l(lnF[wl(x)-- ~o~luxkhk) ~ (x)/h I-+0 for h-~O. 

Similarly one can show that 

s u p ( t + l x l ~ ) ~  (r -~0  . for h-+O. 
x ~ R  

Then f o r  any (p(x) ~ S t he  o n e - p a r a m e t e r  f a m i l y  ~N(h)  c o n v e r g e s  t o  ze ro  i n  S f o r  h § 0. 
S i n c e  f o r  any g e n e r a l i z e d  f u n c t i o n  f ~ S' we have  

(r  ~)  = (f, r  -+ 0 for h -~ 0, 

the  f o l l o w i n g  a s s e r t i o n  i s  p ro v ed :  

THEOREM 2. For  any g e n e r a l i z e d  f u n c t i o n  f ~ S' 

f -1 [ lnF[w]]  , [ N  ~ ~l~,h~'(iD)~[ (h-+O). 
h=O 

in space S'. 
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w; 

Let P~ = P~ (hx) = E ~th~o; =he equation 
k=0 

d_j = !~-i [p~ _ p~], i (i. s) dt 

is called the differential approximation to the difference scheme of (1.2). 

Consider the following Cauchy problems: 

d_~] -~ __1 17-1 [ ln F [w]] * 1, ] It=o = fo ~ S ' ;  ( 1 . 9 )  
dt 

a_/=  ! F -1 [P~I * l, i I,=o = fo ~ S', (1 .10)  dt T 
WI 

where Pm= ~khkx~; x and h are parameters, and w is a finite linear combination of general- 
At0 co 

ized functions ~uh that satisfies (1.4). In that case ~.Nkhkx k converges to in F[w](hx) in 
h=0 

some region ~ c R, i.e., for xh ~ ~; le~T,h(t),~m,x,h(t) be the decision operators of 
(1.9) and (i.i0), respectively. 

It is clear that 

~ , h  (t) ] = F -~ t ( f  [wl)+/~] * / ,  ~ h (t) : S' -+  S' , ( 1 . 1 1 )  

(the latter follows from theorem i); 

~,~ ,~  (t) / = F -1 [e +~/~]  � 9  ~,~ ,~  (0  : s ' - ~  z ' .  ( 1 . 1 2 )  

THEOREM 3. Let fr.h(t) be a solution to (1.9) and fm,r,h(t) be a solution to (i. I0). 
Then fT,h(t) --fm,x,h(t~ -- o(hm)(h § 0) in Z . 

Proof. It is necessary to show that V~ ~ Z 

l im ([],,h (t) --  ]m.x.U (t)], ~)/h m = O. ( 1 . 1 3 )  
h~o  

As fT.h(t) =~T,h(t)fo, fm,x,h(t) =~m,~,h(t)fo, we have from (I.ii) and (1.12) that (1.13) 
is equivalent to 

t~ (((F [wl) ']+ -- e'~=/+) g0,~)/h ~ = 0 V+ e D (R), 
h~o (i. 14) 

let g(h; X)k= h-m(e In F[w] --Pm where go = F[fo] ; --i), and then for any integer nonnegative 
k and any compact K we have D g(h; x) -> 0 uniformly on K for h § 0 and V~ ~ D(R); g(h; x). 
~(x) § 0 in D(R) for h § 0. As go ~ $' then (ggo, ~) § 0 for h § 0 and V~ D(R), and the 
latter means that 

~ (~ (#~[~-'~- t) ~0, +)/~ = li~((F[~l- ~) ~0, +)/~ = 0 
h~0 h-~o 

Therefore, (1.14) is proved and thus the assertion. 

Using Theorems 1 and 3 we can prove: 

, be a solution to the Cauchy problem of (1.2) and 
(1.6) and fm,T~h(t) be a solution ~; Cauchy problem of (1.8) and (1.6), and =hen 

~ - t,,,,%,+ (n~) = o (~,'~) (h--~ O) 
in Z', 

So far we have considered the two-parameter family of (1.2)~ where the schemes are depen- 
dent on x and h, and we have examined the behavior of the solution to the Cauchy problem as h 
tends to zero. In practice one usually supposes some relationship between T and h. For 
example~ for schemes such as (1.2) that approximate equations of hyperbolic type it is natural 
to put x = ~h, ~ = const~ and we show that an assertion analogous to Theorem 3 applies when 
there is a connection between x and h. 

Let x = ~h =~ 0 < ~< $, ~ ~ const and let the expansion of the function in F[w] as a 
series near zero have the firs= ~ coefficients Bo, ..., N~-t also zero. Then (I/x)inF [w] (hx)= 

+ Xm x rl~ (hx) ~-=, �9 S i n c e  we have 
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Fig. 1 Fig. 2 

h,~_ ~ ~ In F [wl (hx) - -  x~ ~h (hx)h-~ ~ 0 

in D(R) for h -~ O, the following assertion applies: 

THEOREM 4, Let T = • a, 0 < a~, a -- const, ~ = const, no = ~i -- ... -- n~-* = 0, 
fh(t) be a solution to (1.9), and fm,h(t) be a solution to 

d'-i- = V +h h~-<+xk */ ,  /I,=0 = fO ~ S ' ,  m ~> l,  
Lh=Z J 

and t h e n  f h ( t )  -- f m , h ( t )  = o (h  m-a) f o r  h + 0 i n  Z ' .  

Using Theorems i and 4 we can prove: 
n ,o 

Consequence.. Let r = ~h u, 0 < a El, fo ~ S', {fh}n=o be a solution to the Cauchy 
problem of (1.2) and (1.6), while fm,h(t) is the solution to the problem of (1.8) and (1.6). 
Let h + 0 in such a way thatFt = nT = const. If rl~ -- ~ = n~ -- ~ = = ~o i 
then f~ -- fm,h(nT) = o(hm-~) for h + 0 in Z'. - ''" ~ -- q~-1 = 0, 

.2. Invariant Difference Schemes. The concept of invariance in difference schemes has 
been introduced [6]. Numerical calculations for various models [I, 7-9] have shown that such 
schemes are better than ones that are not invarlant but which reproduce the qualitative pic- 
ture of the solution. 

Consider the differential equation 

% = Lu (2.1) 

where L is a linear differential operator with constant coefficients that contains only dif- 
ferentiation with respect to spatialvariable+x; this allows of the transformation group G 
[10], while T is an operator from G that maps the space of variables (t, x, u) into itself, 
i.e., T(t, x, u) = (t', x', u'), where t' = t'(t, x, u)' x' = x'(t, x, u); u' " u'(t, x, u); 
if u(t, x) satisfies (2.1), then the function u' _considered as a function of the variables 
(t', x') , also satisfies (2.1). Therefore, operator T acting in a finite-dlmensional ~clid- 
Jan space generates some operator.T! defined on_the set of solutions to (2.1) and which con- 
verts one solution to another: u.' = T'u, 

Let two Cauchy problems be posed_correctly.for: (2,1) : 

u 1,=% -- ~ (z); (2.2) 

u l,=,~ = r (x) ( 2 . 3 )  

where ~(x) = v(t, x)]t=t o, ~(x') = v'(t', X')[t'=t', where v(t, x) is some solution to (2.1), 
v' = T'v. As the Cauchy problems of (2.1), (2.2),gand (2.1), (2.3) are correct, the following 
applies to the solutlone: 

u' -- T'u -- 0, (2.4) 

where u'(t', x') is the solution, to the problem.of (2.1) and (2.3)and u(t, x) is the solution 
to (2. i) and (2.2). 

585 



-4 
I 

Ii 
~ ~ 6  ~,. 

- - 7  

Fig. 3 

2. Let (2.1) be approximated by the difference scheme 

u n+l = A u  n (2 .5 )  

with order of approximatlon k. We consider a second differential approximation for (2,5): 

u t = L u  + hkLlu  + h k+s L~u, ~ > O, (2 .6 )  

where L~ and L~ are certain differential operators with constant coefficients. 

We formulate two Cauchy problems for (2.5) and (2.6) with the initial conditions 

u ~ = u(O) -=~;  ( 2 .7 )  

u ~ = u(O) = * ,  ( 2 .8 )  

where  ~ and $ s a t i s f y  t h e  above  c o n d i t i o n s  ( s e e  ( 2 . 2 )  and ( 2 , 3 ) ) .  

Let u~, u h be solutions to (2.5) and (2.8) or (2.5) and (2.7), respectively, while v and 
w are solutions to (2.6) and (2.7)or (2.6) and (2.8), 

THEOREM 5. In general, Uh --T'u h = o(hk), but if (2.5) is invariant with respect to 
group ~[g] ~n u h -T'Uh = O(hk+~). 

Proof. Let v' = T'v) and thenv'(t', x') satisfles 

-- l ! ! + ! + !) + ' * ), 
Or' 

! ! 

where L, and Lz are certain operators dependent on.group G. 
! ! 

This means that in Z' we have w--v' = O(h k) if L~ ~ 0 or w--v' = O(h k+B) if L, ~, 0 
(the latter means that (2.5) is invariant with respect to G). Theorem 4 implies that u h = w + 
o(h k+B) and u h = v + o(h k+B) in Z', so we finally get 

I t 

u~ - r ' u h  = (uh - -  u,) + (w - -  r'v) + r'v -- T'u,~. 

This means that u h -- T'u h = O(h k) if L'~ ~ 0 (the scheme is not invariant) and Uh -- T'u h 
0(h k+B) if L'~ ~ 0 (the scheme is invarlant). 

3. A comparison has been made [9] of the results from various invariant and other 
schemes for the following model problem: 

Ou = ~Y Ou au.  
O"7 ~ - -  ax-~y,  (2.9) 

t - -  t p~ 
u ( O , x ,  y) = ~oo P' = ( x - - a ) ~ - } - ( Y - - b ) 2 < u ~ '  

O, p ~ > u ~ .  ( 2 . 1 0 )  

The problem of (2.9) and (2.10) describes_the rotation of.a circular cone (height i, radius 
of base uo) around the.origin withperiod.~/a; (2.9).allows the rotational transformation. 
It is presente~here to make a more detailed comparison of the numerical results from an invariant 
second,ordersplltting scheme.and_variousstandard.second-order_schemes, which were the Laks-- 
Vendroff scheme (Richtmayer's modification [11]) andthe MacCormack scheme [12]. 

586 



The calculations showed that the invariant scheme reproduced the details of the exact 
solution more precisely. Figures~l-3 show the lines of u(t, x, y) = c = const. (c = 0.2; 0.4; 
0.6; 0.8) for the exact solution (circle) and the dlfferent solution at t = 3 derived from 
the invariant scheme (Fig. i), the MacCormack scheme (Fig. 2), and the Laks--Vendroff scheme 
(Fi E . 3). The calculations were performed with a_rectangular net, At/Ax = 0.01, ~t/~y = 0.02, 
~t, Ax, Ay being the steps in time.and space, respectively. 
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