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It is usual to pass from the discrete to the continuous limit in constructing models for
applications. Such models are often very complicated for direct examination, and numerical
methods are often the only ones to use. A numerical algorithm involves passing from the ana-
log representation to a discrete one. The resulting discrete model must be as close as pos—
sible to the initial analog model. The finite~difference method is one of the most widely used.
The differential equations are replaced by a difference scheme, which may be constructed in
various ways. This makes the importance of qualitative examination of such schemes clear.

Differential approximation is widely used in examining difference schemes for hyperbolic
equations [1l], which enables one to construct new difference schemes with preset properties,
while also enabling one to analyze existing or new difference schemes and to classify such
schemes on the properties.

It is shown here that differential approximations can be used in asymptotic analysis of
a difference scheme, and it is also shown that invariant difference schemes are closer to the
initial analog model than are schemes that are not invariant under analog transformations
allowed by the initial differential equatioms.

1. Asymptotic Expansion of the Solution to a Cauchy Difference Problem. Asymptotic
analysis 1s one of the major methods of qualitative examination for difference schemes.
Studies have been made [2-5] of the scope for examining asymptotic behavior in difference
schemes by differential approximation. It has been shown [2] that the solutions to some
schemes in generalized-function space converge to the corresponding differential approxima-
tions for t + » and a given time step. A study has been made [3, 4] of the asymptotic be-
havior of the solutions to a one-parameter family of difference schemes; the solution to the
Cauchy problem for the differential approximation gives an asymptotic representation of the
solution to the Cauchy difference scheme in a certain topological space (subject to fairly
rigid constraints on the schemes and differential approximations). Following [5], it has
also been shown that a similar assertion applies in the linear topological space of general-
ized functions Z' without substantial restrictions on the difference schemes and differential
approximations.

1. For simplicity, we consider the case of one independent spatial variable, although
all results apply in the multidimensional case.

We recall certain definitions and symbols from the theory of generalized functions re-
quired subsequently.

Let S be the space of rapidly decreasing functions of real argument, while D(R) is the
space of finite functions whose carrier is contained on the real axis R, while Z is the
space of integer analytic functions of complex argument that satisfy the following condition:
for any function ¢(z) & Z and foranyk (k > 0) there exist constants a and C, such that

Jz2(z)] < Cj, exp {allmz]}.

Generalized-function spaces (spaces of linear continuous functionals) upon the spaces §,
D(R), and Z are denoted, respectively, by S', D'(R), Z'.

If f is the generalized function, then the value on a basic function is denoted as (f,

+o0
®?); if f(x) is a summable function, then U,@)::lff(z)¢(x)dz.
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The following operators are defined on the above basic-function spaces:

+0o
Flol(®) = | et (a)dz,

+oo
Fel® = | e to@ds, D)=

—c0

e

oz’

Ty (z) = @ (z+y), (1.1)

+o0

@@= e be—ndy @) =02,

—00

which may be defined in generalized-function spaces in such a way that the corresponding
operators act as in basic-function space when a generalized function is a basic function.

We define the operators of (l.1) below in generalized-function space (f and g denote general-
ized functions, while ¢ is a basic functiomn):

(FIfl, @) = (f, Floh), (Ff1, @) = (f, F-'ol),
# @) = ¢, @), (O™ 1, @) = (=1)™(f, D),
(Tf @) = (f, Ty9), (o)a) = (, T-s0),
(g @) = (g, ] # 9).
By 5y we denote a generalized function that acts in accordance with (6y, o) = ¢(y).

2., Consider the difference scheme

D BaTanf" = X BT
lel<gy 1Bl<g,

1.2)

in S' space. Here 0 qu, qi < =;b}, bE are certain real constants and h is a parameter.
The schemes of (1.2) may be written as

wpfr = wy * 1.3)
where
;= Asd, = bid—on, J=0,1.
v w; % lal2<q,- aO—ah; J
Everywhere in what follows, we assume that the following are obeyed:
Flw;1(z) #+0 Vz= R, j = 0,1. (1.4)

The I form of differential representation for the difference scheme of (1.2) that satis-
fies (1.4) is the equation

YO _ L p[in F [l — InF [w]] o1 (0). (1.5)

We consider the Cauchy problem for (1.2) and (1.5) with the initial condition
= 0) = fp (1.6)
The following assertion has been proved [5]:

THEOREM 1. Let fo & §'; then the Cauchy problem of (1.2) and (1.6) and of (1.5) and (1.6)
has a unique solution in space S'., Also: a) if f(t) is the solution to (1.5) and (1.6), then
{f0}._, is the solution to (1.2) and (1.6), where f0 = f(n1); b) if the solution to (1.2) and
(1.6) is (fn}§= , then there exists a one-parameter family of generalized functions f(t) that
constitute a soiution to the Cauchy problem of (1.5) and (1.6) and which is such that f£(at) =
£,

It has also been shown [5] that the following applies in a certain generalized-function
space dependent on the difference schemes of (1.2):

F7 InFfwill«f= I mik" (D)'f, j=0,1. (1.7)

j, k
Equation (l.7) applies in general in a weaker topology than that of S'. In (1.7) the nf{h

denote coefficients in the expansion of the function 1n Flw,](x) as a Taylor series near x =

_ n j
0, i.e., nFwjl(2) = X mih'a".
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3. We show that the right side in (1.7) can be taken as an asymptotic expansion of the
generalized function F~ *[ln F[wj]]*f for h » 0 in topological space S'.

o~

We recall that the formal series 2 a4" is termed an asymptotic expansion of ¢ (h) for

h +~ 0 1f for any integer N -
N
lim [‘P (h) — 2 akhh;’/hN = 0.

h—o

This is written as

oo

o)~ X b (h—0).
#=0

In the same way we write the asymptoic expansions of the generalized functions dependent on
the parameter: the series ,2% fuh*  is called an asymptotic expansion of the one-parameter
family of generalized functiomns f(h)(f(h) & S', fy & S'Vk) for h » 0 if for any basic func-

tion @ & S we have (f(h), q>)~k§oh"(fk, Q) (—0).

It can be shown that if f(h)~§of;.h" (h—0), than F[f] ~ é.F[m h* (h—0) ; moreover, for
any given x € R (here and subsequently the subscripc j is omitted) we have
In F [w] (a:)~’§o nz*ht  (h—0).
We show that for any basic function @€ S the product
Yy (B) = {In Fw) (z) — hzz_']o nkx"hh} @ (z)/mY
converges to zero for h > 0 in S.

Since o MR converges to ln F[w](x) for ]xhl < ro for some ro > 0, then
=0

N
In F [w] (z) — hgo nuzh®

where Co(¢h) > 0 for h -+ 0. Further, for x € R |
|InF {w] @) | < C, (0 + |2k ™

SC WY |z|¥ for  |ah|<r,,

for certain constants C; and M;, so |1n Flw](x)| < Calxn|"* for |xh] > vo, Ma > N, and then
C, By R 2N, |2h|< 1y,
— "R <{ ;
In F ) (z) hgow Ch¥ |z, “|ak| =T,

ThenVg (x) & S

N
(IHF [wl(x) _ kgonhxkhk) Q (x)/hN‘—)O for - h—0.

sup
xR
Similarly one can show that
m
sup (1 +|x|2)M|i,-,,-(¢~q>)|—>0  for b0
xER oz ’

Then for any ¢(x) & S the one-parameter family ¢y(h) converges to zero in § for h ~ 0.
Since for any generalized function f € §' we have

("‘prv q’) = (fv ‘I’qu)”>' 0 for h—>0,
the following assertion is proved: »
THEOREM 2. For any generalized function f & 8'

Fl{lnFlwll+f~ hgo neh® (iD)*f (h-»O)..
in space S'.
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m .
Let P =Pl (hz)= 3 nik*z".; the equation
=0 '

T =L F P —Ph]sf (1.8)

is called the differential approximation to the difference scheme of (1.2).

Consider the following Cauchy problems:

j{ 1 SF Fllef, fheo=f=S; (1.9)

—%:;F—llpm]*fy flt=o=foesl’ (l 10)

where P, = Znhhkx", 7 and h are parameters, and w is a finite linear combination of general-
=0

ized functions §,} that satisfies (1.4). 1In that case anhx converges to ln Flw](hx) in
some region & < R, i.e., for xh & Q; let %r,h(t)»%m,r,h(t) be the decision operators of
(1.9) and (1.10), respectively.
It is clear that
Ren(®)] = F 7 ((F )]+ f, Fep(§): 8 5" (1.11)
(the latter follows from theorem 1);
T @) f = F [P/ wf, Fiman(t): 8> 2. (1.12)

THEOREM 3. Let fr p(t) be a solution to (1.9) and fp ¢ nh(t) be a solution to (1.10).
Then fr h(t) — fp 1,n(t) = o(W®) (b > 0) in Z'.

Proof. It is necessary to show thatvy & Z

lim([fth(t)—‘fmrh(t)] '\P)/hm= (1.13)
As £, h(t) =%, hie)fe, fu,t, n(t) =%m T h(t)fo, we have from (1.11) and (1.12) that (1.13)
is equivalent to
lim (((F [w1)"* — ¢'"m/*) £,,9)/A™ =0 Vo= D (R),
h->0 (1'14)

. where go = F[fqe]; let g(h; x) = h™®(e ln Flw] =Py _ 1), and then for any integer nonnegative
k and any compact K we have DK g(h; x) +~ 0 uniformly on K for h + 0 and V¢ & D(R); g(h; x)-
9(x) > 0 in D(R) for h > 0. As go = $' then (ggo, ¢) > 0 for h » 0 and V9 & D(R), and the
latter means that

}Eﬁ‘ ('er (elnF[wH—Pm__ 1) %o, (p)/h-m - },E%((F [w] — epm) g, fP)/hm —

Therefore, (1.14) is proved and thus the assertion.
Using Theorems 1 and 3 we can prove:

Consequence. Let fo = 8' If | a=o 0€ @ solution to the Cauchy problem of (1.2) and
(1.6) and £, . n(t) be a solution to Phe Cauchy problem of (1.8) and (1.6), and then

fo~ Fmun (1) = 0 (™) (b —0)

in 2',

So far we have considered the two-parameter family of (1.2), where the schemes are depen-
dent on T and h, and we have examined the behavior of the solution to the Cauchy problem as h
tends to zero. In practice one usually supposes some relationship between T and h. For
example, for schemes such as (1.2) that approximate equations of hyperbolic type it is natural
to put t = nh, ¥ = const, and we show that an assertion analogous to Theorem 3 applies when
there is a connection between t and h.

Let v = xh®, 0 < a7, %* = const and let the expansion of the function ln F[w] as a
series near zero have the first I coefficients no, ..., nz., also zero. Then (1/1) InF [w](hz) =

4 e o arn
o hgz'nh(hx) + Since we have
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Fig. 1 .~ Fig. 2

1 1 1 had
e [;F In F [w] (hz) — ~ hgl Mg (hx)h"“] -0

in D(R) for h = 0, the féllowing assertion applies:

THEOREM 4, Let T = xha, 0<oa<<l, o =const, % = const, Ng = N3 = ¢,s = n7-1 = 0,
fn(t) be a solution to (1.9), and £ 1 (t) be a solution to

_d-'t.—_i.F_l ﬁ hh-o h — F S’ >
=5 7| Znbioat o), flmo=fe S, m>1,

and then fp(t) — £y y(t) = o(h®=®) for h + 0 in 2’
Using Theorems 1 and 4 we can prove:

Consequence. Let T =xh%, 0 < a7, fo = S', {fg}zgo be a solution to the Cauchy
problem of (1.2) and (1.6), while fy h(t) is the solution to the problem of (1.8) and (1.6).
Let h > 0 in such a way thatt = nt = const. If ng —ni = ng —ni=...= n%‘l _‘”2-1 = 0,
then fﬁ — fm,h{nt) = o(h®%) for h » 0 in 2Z', B

2. Invariant Difference Schemes. The concept of invariance in difference schemes has
been introduced [6]. Numerical calculations for various models [1, 7-9] have shown that such
schemes are better than ones that are not invariant but which reproduce the qualitative pic-
ture of the solution.

Consider the differential equation

where L is a linear differential operator with constant coefficients that contains only dif-
ferentiation with respect to spatial variable.x; this allows of the transformation group G
[10], while T is an operator from G that maps the space of variables (t, x; u) into itself,
i.e., T(t, x, u) = (t', x', u'), where t' = t"(¢t, x, u)' x' = x"(t, x, u); u' = u'(t, x, u);
if u(t, x) satisfies (2.1), then the function u',.considered as a function of the variables
(t', x'), also satisfies (2.1). Therefore, operator T acting in a finite-dimensional &uclid-
ian space generates some.operator.T! defined.on.the .set of solutions to (2.1) and which con-

verts one solution.to another: u' = T'u,

Let two Cauchy problems be posed.correctly.for: (2.1):
Uli=t, = @ (2); (2.2)
Uy =¥ @) (2.3)

where ¢(x) = v(t, x)|t=t°’ P(x") = v'(t', x')|¢'=¢!, where v(t, x) is some solution to (2.1),
L]

v' = T'v. As the Cauchy problems.of (2.1), (2.2),.and.(2.1), (2.3) are correct, the following
applies to the solutions:

‘u' — T'u =0, _ (2.4)
where u'(t', x') is the solution.to the.problem. of.(2.1) and (2.3).and u(t, x) is the solution
to (2.1) and (2.2).
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Fig. 3

2. Let (2.1) be approximated by the difference scheme

_ ur+t = Ayn (2.5)
with order of approximation. k. We consider a second.differential approximation for (2.5):
u, = Lu + k:Lu + BA+8 Loy, p > 0, (2.6)

where L, and L; are certain differential operators with constant coefficients.
We formulate two Cauchy problems for. (2.5) and (2.6) with the initial conditions
u® = u(O) = @ (2°7)
w=u(0) =1y, (2.8)
where ¢ and y satisfy the above conditions (see (2.2) and (2.3)).

Let up, up be solutions to (2.5) and (2.8) .or (2.5) and (2.7), respectively, while v and
w are solutions to (2.6) and (2 7) or.(2.6) .and. (2.8).

THEOREM 5. In general, uh - T'u, = O(hk), but if (2.5) is invariant with respect to
. group G.[6] then uh - T'u, = 0(nk+8y,

Proof., Let v' = T'v, and then.v'(t', x'). satisfies

at, = Lo’ B (L + L) + WP (L + L),

1 1
where L; and L; are certain operators. dependent on. group G.

This means that in Z' we have w — v' = O(hk) if L; FO0orw—v' = 0(hk+B) if L ¥ 0
(the latter means that (2.5) is invariant with respect to G). Theorem 4 implies that uh =W 4+
o(hk*8) and u, =V + o(hktB) in z', so we finally get

up — T'up = (u,, —w) 4+ W —T'0) + T'v— T'up.
This means that uh - T! up = O(hk) if L; # 0 (the scheme is not invariant) and uh - T' uy =
O(hktB) 1f L; # O (the scheme is invariant).
3. A comparison has been made [9] of the results from various invariant and other
schemes for .the following.model.problem:
. du ou |
25 T % 57 ax B (2.9)
1—-Lp, pP=(z—aP+y—br<u,
u (07 .’E, y) = o . . . (2.10)

0, p*>uj.

The problem of (2.9) and (2.10) describes.the .rotation of .a circular cone (height 1, radius
of base uo) around the_origin with period.2n/a; (2.9).allows.the. rotational transformation.
It is presented:here tomake a more detailed comparison of the numerical results from an invariant
second-order splitting scheme.and various standard. second-order schemes, which were the Laks—
Vendroff scheme (Richtmayer's modification [11]) and the MacCormack scheme [12].
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The calculations showed.that.the.invariant scheme.reproduced the details. of the exact
solution more.precisely. .Figures.l-3 show.the.lines.of u(t, x, y) = ¢ = const. (¢ = 0.2; 0.4;
0.6; 0.8) for the exact solution (circle).and the different._solution at t = 3. derived from
the invariant scheme (Fig..l),.the MacCormack.scheme. (Fig.. 2), and the Laks—Vendroff scheme
(Fig. 3). The calculations were.performed with.a.rectangular.net, At/Ax = 0.01, At/Ay = 0.02,
At, Ax, Ay being the steps.in time.and space,.respectively.
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